I optimistically assumed that the W3C XQuery/XSLT specification for maps would be published long before Saxon 9.4 was released. I was wrong - the XQuery WG didn't rubber-stamp the XSLT WG's spec as expected, but insisted on reviewing it from first principles, starting a long drawn out study of requirements and use-cases which is still ongoing.
So Saxon 9.4 has maps, but no documentation for them. To remedy this, here is the spec. It happens to be a snapshot of a draft of the XSLT 3.0 specification, but of course everything can change before a draft is published. And as always when Saxon implements features in a draft specification, if the spec changes then Saxon will change with it, regardless of compatibility. Use at your own risk.
20.1 Maps
A map is an additional kind of item.
[Definition: A
map comprises a collation and a set of entries. Each entry comprises a
key which is an arbitrary atomic value, and an arbitrary sequence called
the associated value. Within a map, no two entries have the same key,
when compared using the eq
operator
under the map's collation. It is not necessary that all the keys should
be mutually comparable (for example, they can include a mixture of
integers and strings). Key values will never be of type xs:untypedAtomic
, and they will never be the xs:float
or xs:double
value NaN
.]
The function call map:get($map, $key)
can be used to retrieve the value associated with a given key.
A
map can also be viewed as a function from keys to associated values. To
achieve this, a map is also a function item. The function corresponding
to the map has the signaturefunction($key as xs:anyAtomicValue) as item()*
. Calling the function has the same effect as calling the get
function: the expression $map($key)
returns the same result asget($map, $key)
. For example, if $books-by-isbn
is a map whose keys are ISBNs and whose assocated values are book
elements, then the expression $books-by-isbn("0470192747")
returns the book
element
with the given ISBN. The fact that a map is a function item allows it
to be passed as an argument to higher-order functions that expect a
function item as one of their arguments.
Like all other values, maps are immutable. For example, the map:remove function creates a new map by removing an entry from an existing map, but the existing map is not changed by the operation.
Like sequences, maps have no identity. It is meaningful to compare the contents of two maps, but there is no way of asking whether they are "the same map": two maps with the same content are indistinguishable.
20.1.1 The Type of a Map
The syntax of ItemTypeXP30 as defined in XPath is extended as follows:
MapType
[17] | ItemType |
::= | ... | MapType |
[18] | MapType |
::= | 'map' '(' ( '*' | (AtomicOrUnionTypeXP30 ',' SequenceTypeXP30) ')' |
The ItemType
map(K, V)
matches an item M if (a) M is a map, and (b) every entry in M has a key that matches K
and an associated value that matches V
. For example,map(xs:integer, element(employee))
matches a map if all the keys in the map are integers, and all the associated values
are employee
elements.
Note that a map (like a sequence) carries no intrinsic type information
separate from the types of its entries, and the type of existing
entries in a map does not constrain the type of new entries that can be
added to the map.
The ItemType
map(*)
is equivalent to map(xs:anyAtomicType, item()*)
, and matches any map regardless of its contents.
Because a map is a function, the type map(K, V)
is derived from function(K) as V
, and instances of map(K, V)
can be used wherever the required type is function(K) as V
.
20.1.2 Functions that operate on Maps
The functions defined in this section use a conventional namespace prefix map
, which is assumed to be bound to the namespace URI http://www.w3.org/2005/xpath-functions/map
.
There is no operation to atomize a map or convert it to a string.
The number of entries in the map may be obtained as count(map:keys($map))
.
20.1.2.1 map:new
- Summary
-
Creates a new map: either an empty map, or a map that combines entries from a number of existing maps.
- Signatures
-
new
()as
map(*)
new
($maps
as
map(*)*
)as
map(*)
new
($maps
as
map(*)*
,$collation
as
xs:string
)as
map(*)
- Rules
-
The function map:new constructs and returns a new map.
The zero-argument form of the function returns an empty map whose collation is the default collation in the static context. It is equivalent to calling the one-argument form of the function with an empty sequence as the value of the first argument.
The one-argument form of the function returns a map that is formed by combining the contents of the maps supplied in the
$input
argument. It is equivalent to calling the two-argument form of the function with the default collation from the static context as the second argument.The two-argument form of the function returns a map that is formed by combining the contents of the maps supplied in the
$input
argument. The collation of the new map is the value of the$collation
argument. The supplied maps are combined as follows:-
There is one entry in the new map for each distinct key value present in the union of the input maps, where keys are considered distinct according to the rules of the
fn:distinct-values
function with$collation
as the collation. -
The associated value for each such key is taken from the last map in the input sequence
$input
that contains an entry with this key. If this map contains more than one entry with this key (which can happen if its collation is different from that of the new map) then it is implementation-dependent which of them is selected.
There is no requirement that the supplied input maps should have the same or compatible types. The type of a map (for example
map(xs:integer, xs:string)
) is descriptive of the entries it currently contains, but is not a constraint on how the map may be combined with other maps. -
- Examples
-
let
$week
:=map{0:="Sonntag", 1:="Montag", 2:="Dienstag", 3:="Mittwoch", 4:="Donnerstag", 5:="Freitag", 6:="Samstag"}
The expression
map:new()
returnsmap{}
. (Returns an empty map, whose collation is the default collation from the static context).The expression
map:new(())
returnsmap{}
. (Returns an empty map, whose collation is the default collation from the static context).The expression
map:new((map:entry(0, "no"), map:entry(1, "yes")))
returnsmap{0:="no", 1:="yes"}
. (Returns a map with two entries; the collation of the map is the default collation from the static context).The expression
map:new((map:entry(0, "no"), map:entry(1, "yes")))
returnsmap{0:="no", 1:="yes"}
. (Returns a map with two entries; the collation of the map is the default collation from the static context).The expression
map:new(($week, map{7:="Unbekannt"}))
returnsmap{0:="Sonntag", 1:="Montag", 2:="Dienstag", 3:="Mittwoch", 4:="Donnerstag", 5:="Freitag", 6:="Samstag", 7:="Unbekannt"}
. (The value of the existing map is unchanged; a new map is created containing all the entries from$week
, supplemented with a new entry.).The expression
map:new(($week, map{6:="Sonnabend"}))
returnsmap{0:="Sonntag", 1:="Montag", 2:="Dienstag", 3:="Mittwoch", 4:="Donnerstag", 5:="Freitag", 6:="Sonnabend"}
. (The value of the existing map is unchanged; a new map is created containing all the entries from$week
, with one entry replaced by a new entry. Both input maps contain an entry with the key value6
; the one used in the result is the one that comes last in the input sequence.).The expression
map:new((map{"A":=1}, map{"a":=2}), "http://collation.example.com/caseblind")
returnsmap{"a":=2}
. (Assuming that the keys of the two entries are equal under the rules of the chosen collation, only one of the entries can appear in the result; the one that is chosen is the one from the last map in the input sequence. If both entries were in the same map, it would be implementation-dependent which was chosen.).
20.1.2.2 map:collation
- Summary
-
Returns the URI of the supplied map's collation
- Signature
-
collation
($input
as
map(*)
)as
xs:string
- Rules
-
The function map:collation returns the collation URI of the map supplied as
$input
. - Examples
-
The expression
map:collation(map:new((), "http://collation.example.com/caseblind"))
returns"http://collation.example.com/caseblind"
.
20.1.2.3 map:keys
- Summary
-
Returns a sequence containing all the key values present in a map
- Signature
-
keys
($input
as
map(*)
)as
xs:anyAtomicType*
- Rules
-
The function map:keys takes any map as its
$input
argument and returns the keys that are present in the map as a sequence of atomic values, in implementation-dependent order. - Examples
-
The expression
map:keys(map{1:="yes", 2:="no"})
returns some permutation of(1,2)
. (The result is in implementation-dependent order.).
20.1.2.4 map:contains
- Summary
-
Tests whether a supplied map contains an entry for a given key
- Signature
-
contains
($map
as
map(*)
,$key
as
xs:anyAtomicType
)as
xs:boolean
- Rules
-
The function map:contains returns true if the map supplied as
$map
contains an entry with a key equal to the supplied value of$key
; otherwise it returns false. The equality comparison uses the map's collation; no error occurs if the map contains keys that are not comparable with the supplied$key
.If the supplied key is
xs:untypedAtomic
, it is converted toxs:string
. If the supplied key is thexs:float
orxs:double
valueNaN
, the function returns false. - Examples
-
let
$week
:=map{0:="Sonntag", 1:="Montag", 2:="Dienstag", 3:="Mittwoch", 4:="Donnerstag", 5:="Freitag", 6:="Samstag"}
The expression
map:contains($week, 2)
returnstrue()
.The expression
map:contains($week, 9)
returnsfalse()
.The expression
map:contains(map{}, "xyz")
returnsfalse()
.The expression
map:contains(map{"xyz":=23}, "xyz")
returnstrue()
.The expression
map:contains(map{"abc":=23, "xyz":=()}, "xyz")
returnstrue()
.
20.1.2.5 map:get
- Summary
-
Returns the value associated with a supplied key in a given map.
- Signature
-
get
($map
as
map(*)
,$key
as
xs:anyAtomicType
)as
item()*
- Rules
-
The function map:get attempts to find an entry within the map supplied as
$input
that has a key equal to the supplied value of$key
. If there is such an entry, it returns the associated value; otherwise it returns an empty sequence. The equality comparison uses the map's collation; no error occurs if the map contains keys that are not comparable with the supplied$key
.If the supplied key is
xs:untypedAtomic
, it is converted toxs:string
. If the supplied key is thexs:float
orxs:double
valueNaN
, the function returns an empty sequence. - Notes
-
A return value of
()
from map:get could indicate that the key is present in the map with an associated value of()
, or it could indicate that the key is not present in the map. The two cases can be distinguished by calling map:contains.Invoking the map as a function item has the same effect as calling
get
: that is, when$map
is a map, the expression$map($K)
is equivalent toget($map, $K)
. Similarly, the expressionget(get(get($map, 'employee'), 'name'), 'first')
can be written as$map('employee')('name')('first')
. - Examples
-
let
$week
:=map{0:="Sonntag", 1:="Montag", 2:="Dienstag", 3:="Mittwoch", 4:="Donnerstag", 5:="Freitag", 6:="Samstag"}
The expression
map:get($week, 4)
returns"Donnerstag"
.The expression
map:get($week, 9)
returns()
. (When the key is not present, the function returns an empty sequence.).The expression
map:get(map:entry(7,()), 7)
returns()
. (An empty sequence as the result can also signify that the key is present and the associated value is an empty sequence.).
20.1.2.6 map:entry
- Summary
-
Creates a map that contains a single entry (a key-value pair).
- Signature
-
entry
($key
as
xs:anyAtomicType
,$value
as
item()*
)as
map(*)
- Rules
-
The function map:entry returns a new map which normally contains a single entry. The collation of the new map is the default collation from the static context. The key of the entry in the new map is
$key
, and its associated value is$value
.If the supplied key is the
xs:float
orxs:double
valueNaN
, the supplied$map
is empty (that is, it contains no entries).If the supplied key is
xs:untypedAtomic
, it is converted toxs:string
. - Notes
-
The function
map:entry
is intended primarily for use in conjunction with the functionmap:new
. For example, a map containing seven entries may be constructed like this:map:new(( map:entry("Su", "Sunday"), map:entry("Mo", "Monday"), map:entry("Tu", "Tuesday"), map:entry("We", "Wednesday"), map:entry("Th", "Thursday"), map:entry("Fr", "Friday"), map:entry("Sa", "Saturday") ))
Unlike the
map{...}
expression, this technique can be used to construct a map with a variable number of entries, for example:map:new(for $b in //book return map:entry($b/isbn, $b))
- Examples
-
The expression
map:entry("M", "Monday")
returnsmap{"M":="Monday"}
.
20.1.2.7 map:remove
- Summary
-
Constructs a new map by removing an entry from an existing map
- Signature
-
remove
($map
as
map(*)
,$key
as
xs:anyAtomicType
)as
map(*)
- Rules
-
The function map:remove returns a new map. The collation of the new map is the same as the collation of the map supplied as
$map
. The entries in the new map correspond to the entries of$map
, excluding any entry whose key is equal to$key
.No failure occurs if the input map contains no entry with the supplied key; the input map is returned unchanged
- Examples
-
let
$week
:=map{0:="Sonntag", 1:="Montag", 2:="Dienstag", 3:="Mittwoch", 4:="Donnerstag", 5:="Freitag", 6:="Samstag"}
The expression
map:remove($week, 4)
returnsmap{0:="Sonntag", 1:="Montag", 2:="Dienstag", 3:="Mittwoch", 5:="Freitag", 6:="Samstag"}
.The expression
map:remove($week, 23)
returnsmap{0:="Sonntag", 1:="Montag", 2:="Dienstag", 3:="Mittwoch", 4:="Donnerstag", 5:="Freitag", 6:="Samstag"}
.
20.1.2.8 fn:deep-equal
- Summary
-
This function is extended to handle maps.
- Signatures
-
deep-equal
($parameter1
as
item()*
,$parameter2
as
item()*
)as
xs:boolean
deep-equal
($parameter1
as
item()*
,$parameter2
as
item()*
,$collation
as
xs:string
)as
xs:boolean
- Rules
-
The
$collation
argument identifies a collation which is used at all levels of recursion when strings are compared (but not when names are compared), according to the rules in [FO:choosing-a-collation]FO.If the two sequences are both empty, the function returns
true
.If the two sequences are of different lengths, the function returns
false
.If the two sequences are of the same length, the function returns
true
if and only if every item in the sequence$parameter1
is deep-equal to the item at the same position in the sequence$parameter2
. The rules for deciding whether two items are deep-equal follow.Call the two items
$i1
and$i2
respectively.If
$i1
and$i2
are both atomic values, they are deep-equal if and only if($i1 eq $i2)
istrue
, or if both values areNaN
. If theeq
operator is not defined for$i1
and$i2
, the function returnsfalse
.If one of the pair
$i1
or$i2
is an atomic value and the other is not, or if one is a node and the other is not, the function returnsfalse
.If
$i1
and$i2
are both maps, the result istrue
if and only if all the following conditions apply:-
Both maps have the same number of entries.
-
Both maps have the same collation.
-
For every entry in the first map, there is an entry in the second map that:
-
has the same key (compared using the
eq
operator under the maps' collation), and -
has the same associated value (compared using the
fn:deep-equal2
function, under the collation supplied in the original call tofn:deep-equal2
).
-
If
$i1
and$i2
are both nodes, they are compared as described below:-
If the two nodes are of different kinds, the result is
false
. -
If the two nodes are both document nodes then they are deep-equal if and only if the sequence
$i1/(*|text())
is deep-equal to the sequence$i2/(*|text())
. -
If the two nodes are both element nodes then they are deep-equal if and only if all of the following conditions are satisfied:
-
The two nodes have the same name, that is
(node-name($i1) eq node-name($i2))
. -
The two nodes are both annotated as having simple content or both nodes are annotated as having complex content.
-
The two nodes have the same number of attributes, and for every attribute
$a1
in$i1/@*
there exists an attribute$a2
in$i2/@*
such that$a1
and$a2
are deep-equal. -
One of the following conditions holds:
-
Both element nodes have a type annotation that is simple content, and the typed value of
$i1
is deep-equal to the typed value of$i2
. -
Both element nodes have a type annotation that is complex content with elementOnly content, and each child element of
$i1
is deep-equal to the corresponding child element of$i2
. -
Both element nodes have a type annotation that is complex content with mixed content, and the sequence
$i1/(*|text())
is deep-equal to the sequence$i2/(*|text())
. -
Both element nodes have a type annotation that is complex content with empty content.
-
-
-
If the two nodes are both attribute nodes then they are deep-equal if and only if both the following conditions are satisfied:
-
The two nodes have the same name, that is
(node-name($i1) eq node-name($i2))
. -
The typed value of
$i1
is deep-equal to the typed value of$i2
.
-
-
If the two nodes are both processing instruction nodes, then they are deep-equal if and only if both the following conditions are satisfied:
-
The two nodes have the same name, that is
(node-name($i1) eq node-name($i2))
. -
The string value of
$i1
is equal to the string value of$i2
.
-
-
If the two nodes are both namespace nodes, then they are deep-equal if and only if both the following conditions are satisfied:
-
The two nodes either have the same name or are both nameless, that is
fn:deep-equal(node-name($i1), node-name($i2))
. -
The string value of
$i1
is equal to the string value of$i2
when compared using the Unicode codepoint collation.
-
-
If the two nodes are both text nodes or comment nodes, then they are deep-equal if and only if their string-values are equal.
-
- Error Conditions
-
An error is raised [tba] if either input sequence contains a function item that is not a map.
- Notes
-
Two nodes are not required to have the same type annotation, and they are not required to have the same in-scope namespaces. They may also differ in their parent, their base URI, and the values returned by the
is-id
andis-idrefs
accessors (see Section 5.5 is-id Accessor DM30 and Section 5.6 is-idrefs Accessor DM30). The order of children is significant, but the order of attributes is insignificant.The contents of comments and processing instructions are significant only if these nodes appear directly as items in the two sequences being compared. The content of a comment or processing instruction that appears as a descendant of an item in one of the sequences being compared does not affect the result. However, the presence of a comment or processing instruction, if it causes a text node to be split into two text nodes, may affect the result.
The result of
fn:deep-equal(1, current-dateTime())
isfalse
; it does not raise an error. - Examples
-
The expression
fn:deep-equal(map{}, map{})
returnstrue()
.The expression
fn:deep-equal(map{"a":=1, "b":=2}, map{"b":=2, "a":=1.0})
returnstrue()
.The expression
fn:deep-equal(map{"a":=xs:double('NaN')}, map{"a":=xs:float('NaN')})
returnstrue()
.let
$at
:=<attendees> <name last='Parker' first='Peter'/> <name last='Barker' first='Bob'/> <name first='Peter' last='Parker'/> </attendees>
The expression
fn:deep-equal($at, $at/*)
returnsfalse()
.The expression
fn:deep-equal($at/name[1], $at/name[2])
returnsfalse()
.The expression
fn:deep-equal($at/name[1], $at/name[3])
returnstrue()
.The expression
fn:deep-equal($at/name[1], 'Peter Parker')
returnsfalse()
.
20.1.3 Map Expressions
A new kind of expression is added to the syntax of XPath.
The syntax of PrimaryExprXP30 is extended to permit MapExpr
as an additional alternative.
MapExpr := "map" "{" (KeyExpr ":=" ValueExpr ("," KeyExpr ":=" ValueExpr )*)? "}"
KeyExpr := ExprSingle
ValueExpr := ExprSingle
Note:
Two variations on this syntax are under consideration: removing the leading keyword "map", and using the token ":" in place of ":=". This would bring the syntax closer to Javascript and JSON notation. However, special lexical rules would be needed to disambiguate this use of ":" from other uses. Feedback is invited.
The value of the expression is a map whose entries correspond to the key-value pairs
obtained by evaluating the successive KeyExpr
and ValueExpr
expressions.
Each KeyExpr
expression
is evaluated and atomized; a dynamic error occurs if the result is not a
single atomic value. If the key value is of type xs:untypedAtomic
it is converted toxs:string
. The associated value is the result of evaluating the corresponding ValueExpr
. The collation of the new map is the default collation from the static context. If
the key value is NaN
then
the key/value pair is not added to the map. If two or more keys are
equal under the collation of the map then the last occurrence is added
to the map and the others are ignored.
For example, the following expression constructs a map with seven entries:
map {
"Su" := "Sunday",
"Mo" := "Monday",
"Tu" := "Tuesday",
"We" := "Wednesday",
"Th" := "Thursday",
"Fr" := "Friday",
"Sa" := "Saturday
}
Note:
Unlike the map:new function, the number of entries in a map that is constructed using a map expression is known statically, except where duplicate keys or NaN values cause some entries to be ignored.
20.1.4 Examples using maps
This section gives some examples of where maps can be useful.
This example uses maps in conjunction with the xsl:iterate instruction to find the highest-earning employee in each department, in a single streaming pass of an input document containing employee records.
<xsl:stream href="employees.xml">
<xsl:iterate select="*/employee">
<xsl:param name="highest-earners"
as="map(xs:string, element(employee))"
select="map:new()"/>
<xsl:variable name="this" select="copy-of(.)" as="element(employee)"/>
<xsl:next-iteration>
<xsl:with-param name="highest-earners"
select="let $existing := $highest-earners($this/department)
return if ($existing/salary gt $this/salary)
then $highest-earners
else map:new($highest-earners, map:entry($this/department, $this))"/>
</xsl:next-iteration>
<xsl:on-completion>
<xsl:for-each select="map:keys($highest-earners)">
<department name="{.}">
<xsl:copy-of select="$highest-earners(.)"/>
</department>
</xsl:for-each>
</xsl:on-completion>
</xsl:iterate>
</xsl:stream>
A complex number might be represented as a map with two entries, the keys being the xs:boolean
value true
for the real part, and the xs:boolean
value false
for the imaginary part. A library for manipulation of complex numbers might include
functions such as the following:
<xsl:function name="i:complex" as="map(xs:boolean, xs:double)">
<xsl:param name="real" as="xs:double"/>
<xsl:param name="imaginary" as="xs:double"/>
<xsl:sequence select="map{ true() := $real, false() := $imaginary }"/>
</xsl:function>
<xsl:function name="i:real" as="xs:double">
<xsl:param name="complex" as="map(xs:boolean, xs:double)"/>
<xsl:sequence select="$complex(true())"/>
</xsl:function>
<xsl:function name="i:imaginary" as="xs:double">
<xsl:param name="complex" as="map(xs:boolean, xs:double)"/>
<xsl:sequence select="$complex(false())"/>
</xsl:function>
<xsl:function name="i:add" as="map(xs:boolean, xs:double)">
<xsl:param name="arg1" as="map(xs:boolean, xs:double)"/>
<xsl:param name="arg2" as="map(xs:boolean, xs:double)"/>
<xsl:sequence select="i:complex(i:real($arg1)+i:real($arg2), i:imaginary($arg1)+i:imaginary($arg2)"/>
</xsl:function>
<xsl:function name="i:multiply" as="map(xs:boolean, xs:double)">
<xsl:param name="arg1" as="map(xs:boolean, xs:double)"/>
<xsl:param name="arg2" as="map(xs:boolean, xs:double)"/>
<xsl:sequence select="i:complex(
i:real($arg1)*i:real($arg2) - i:imaginary($arg1)*i:imaginary($arg2),
i:real($arg1)*i:imaginary($arg2) + i:imaginary($arg1)*i:real($arg2))"/>
</xsl:function>
Note:
This
example demonstrates how useful it would be to allow user-defined type
aliases, so that callers of this function library could write code that
treats the value simply as acomplex-number
, not as a map. A proposal to introduce such type aliases is under consideration.
Given a set of book
elements, it is possible to construct an index in the form of a map allowing the
books to be retrieved by ISBN number.
Assume the book elements have the form:
<book>
<isbn>0470192747</isbn>
<author>Michael H. Kay</author>
<publisher>Wiley</publisher>
<title>XSLT 2.0 and XPath 2.0 Programmer's Reference</title>
</book>
An index may be constructed as follows:
<xsl:variable name="isbn-index" as="map(xs:string, element(book))"
select="map:new(for $b in //book return map{$b/isbn := $b})"/>
This index may then be used to retrieve the book for a given ISBN using either of
the expressions map:get($isbn-index, "0470192747")
or $isbn-index("0470192747")
.
In
this simple form, this replicates the functionality available using
xsl:key and the key function. However, it also provides capabilities not
directly available using the key function: for example, the index can
include book
elements in multiple source documents. It also allows processing of all the books
using a construct such as <xsl:for-each select="map:keys($isbn-index)">
As in Javascript, a map whose keys are strings and whose associated values are function items can be used in a similar way to a class in object-oriented programming languages.
Suppose an application needs to handle customer order information that may arrive in three different formats, with different hierarchic arrangement:
-
Flat structure:
<customer id="c123">...</customer> <product id="p789">...</product> <order customer="c123" product="p789">...</order>
-
Orders within customer elements:
<customer id="c123"> <order product="p789">...</order> </customer> <product id="p789">...</product>
-
Orders within product elements:
<customer id="c123">...</customer> <product id="p789"> <order customer id="c123">...</order> </product>
An application can isolate itself from these
differences by defining a set of functions to navigate the relationships
between customers, orders, and products: orders-for-customer
, orders-for-product
, customer-for-order
, product-for-order
.
These functions can be implemented in different ways for the three
different input formats. For example, with the first format the
implementation might be:
<xsl:variable name="flat-input-functions" as="map(xs:string, function(*))*"
select="map {
'orders-for-customer' :=
function($c as element(customer)) as element(order)*
{$c/../order[@customer=$c/@id]},
'orders-for-product' :=
function($p as element(product)) as element(order)*
{$p/../order[@product=$p/@id]},
'customer-for-order' :=
function($o as element(order)) as element(customer)
{$o/../customer[@id=$o/@customer]},
'product-for-order' :=
function($o as element(order)) as element(product)
{$o/../product[@id=$o/@product]} }
"/>
Having established which input format is in use, the
application can bind the appropriate implementation of these functions
to a variable such as $input-navigator
,
and can then process the input using XPath expressions such as the
following, which selects all products for which there is no order: //product[empty($input-navigator("orders-for-product")(.))]